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ABSTRACT: Different rubber formulations were designed
using nitrile rubber and a mixed crosslinking system con-
sisting of sulfur/accelerator and electron beam radiation.
Based on the experimental results, an artificial neural net-
work (ANN) was constructed to simulate the mechanical
properties and volume fraction of rubber. The ANN could
predict accurately the above properties for a series of nitrile
rubber compounds. However, the number of training data

played a key role in the ANN predictive quality. In addition,
the more complex the nonlinear relation between input and
output was, the larger was the number of training dataset
required. The predicted results were further validated using
another mathematical model. The constructed ANN was
verified with a completely different styrene butadiene rub-
ber system. The prediction was found to be extremely good.
© 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2227–2237, 2006

INTRODUCTION

Advanced formulation techniques for the develop-
ment of different rubber compounds for specific pur-
poses are of major strategic importance to rubber com-
pounding industries. These industries face increasing
pressure to develop a compound of particular charac-
teristics in a stipulated period of time, while ensuring
the quality or consistency of the final product. Cur-
rently, the main factors limiting the development of
different rubber compounds include limited availabil-
ity and incapability of different modeling techniques
to predict properties, and the highly sensitive and
nonlinear behavior of different parameters affecting
the properties of the final product.

It is not generally easy to formulate a compound to
meet specific requirements exactly. Usually a trial
compound is mixed, its properties measured, and the
formulations are subsequently amended according to
specifications.1,2 Often, this procedure may involve a
cycle of changing the formulation and retesting until
usable results are obtained. Development of com-
pounds to meet the specifications of a product is rou-
tinely done in industries and many laboratories are
using the above method. The primary focus of this
article is to predict the mechanical properties and
swelling of rubber vulcanizates using an artificial neu-
ral network approach (as defined later) with a mini-

mum number of experiments. To develop and verify
this concept, filled nitrile rubber (NBR) having a
mixed crosslinking system and styrene butadiene rub-
ber (SBR) vulcanizates with a mixed crosslinking sys-
tem have been used. Conventional curing agents are
used to improve the physical properties of rubbers. A
number of curing agents are available for vulcaniza-
tion that can give different properties of a base poly-
mer depending on the requirement of the end-use. But
in many cases, one type of crosslink does not satisfy all
of the required properties, so mixed crosslinking sys-
tems are essential to have a compromise set of prop-
erties. The mixed crosslinking system has been widely
studied by many workers.3–9 We have introduced for
the first time a mixed crosslinking system consisting of
sulfur acting as the conventional curing agent and an
electron beam as the additional crosslinker.10 This has
also allowed us to operate a large number of variables
consisting of the nature of rubber and the type and
level of crosslinking with a view to producing vulca-
nizates having a wide range of properties.

To meet a special application, for example, concern-
ing one or several measurable material properties,
rubber compounds can be designed by selecting the
appropriate parameters and their levels in the formu-
lation. One such application, namely development of
rubber compounds based on nitrile rubber for seals,
o-rings, and so forth, is targeted in this article. Modi-
fication of rubbery materials by electron beam (EB)
radiation is a potential method for the development of
new materials for specific applications. In the green
drive, that is, to make the world pollution free, this
technology takes an important position. The process is
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very clean, requires less energy, permits greater pro-
cessing speed, and operates at ambient temperature.
Such consequences are rarely possible in the case of
crosslinking by other thermo chemical means.11,12 It
has also been demonstrated that apart from crosslink-
ing, oxidation and degradation of the network struc-
ture take place during EB radiation. The above struc-
tural changes lead to drastic changes of mechanical,
dynamic mechanical, and elastic properties, and ther-
mal stability of the materials.13,14 The mechanical
properties, an important criterion of any compound
for such an application, are affected by many factors,
such as the nature of the raw material, crosslinking
system, nature and amount of filler, and so forth. Six
significant factors, namely radiation dose, sensitizer,
filler, antioxidant, accelerator, and sulfur, have been
selected here. As the number of experiments increases,
it becomes time consuming, with more numbers and
levels of factors. So, a partial factorial design, namely
the Taguchi statistical technique—L25 model—is
adopted. But it is very difficult to know exactly how
these factors affect the final properties of a given
compound. Due to the characteristics of the com-
pounds and the complexity of the elaboration process,
it is virtually impossible to predict the mechanical
properties of the compound in terms of first princi-
ples. Even the analysis and prediction of results are
not possible with the usual practice of “computer com-
pounding” with packages like E-CHIP, MAXIMISE,
and JUSE-QCAS followed in industries.15 This ef-
fected our use of Artificial Neural Networks (ANN).

ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) approach is a
powerful mathematical tool in modeling of material
properties, and therefore it has been introduced into
the fields of material science recently.16,17 Neural net-
works are composed of simple elements operating in
parallel. These elements are inspired by biological ner-
vous systems. As in nature, the network function is
determined largely by connection between these ele-
ments, which are mostly nonlinear transfer functions
in computer simulations. An ANN can be trained to
perform a particular function by adjusting the values
of the connection (weights) between the elements.
Roughly speaking, with enough parameters, these net-
works are able to approximate any reasonable func-
tions.18

The use of ANNs can help us to find complicated
dependencies among input (formulation of the com-
pound) and output (properties). ANNs have the abil-
ity to measure nonlinear relationships among vari-
ables, without prior information about the process.19

Recently, ANNs have been used successfully to pre-
dict the copolymer composition as a function of reac-
tion conditions and conversion.20

We can consider “compounding and their relation-
ship to properties” as a gray box and train a neural
network using available experimental data. These are
mathematical models that have the ability to learn the
correlation between input and output values. The
training of the network consists of introducing a set of
correlated inputs and outputs, called examples. From
these examples, the network goal is modeling the
relationship between the input and the output vari-
ables, by adjusting the node connection weights. The
general structure of an ANN is shown in Figure 1a.
When the system converges to a stable solution, we
can enter a new formulation and get its mechanical
properties. The greatest advantage of an ANN is its
ability to model complex nonlinear, multidimensional
relationships without any prior assumptions about the
nature of the relationships, and the network is built
directly from experimental data by self-organizing ca-
pabilities. In this work, a neural network is imple-

Figure 1 (a) General structure of the artificial neural net-
work, where X1

(n)
. . . ..XN

(n) are the inputs and Wj1
(n). . .

WjN
(N) are the weights. (b) Structure of a constructed back

propagation algorithm, where A,B. . . . . . F are the six inputs,
Uij is the input layer, Vij is the hidden layer, and F1 is the
output.

2228 VIJAYABASKAR ET AL.



mented and analyzed to predict the mechanical prop-
erties and swelling resistance of new compounds from
their formulation. Network characteristics have been
analyzed to guarantee the stability and convergence of
the solutions, and some applications and possible ex-
tensions of this kind of treatment are discussed.

IMPLEMENTATION

In this work, a three-layer back propagation algorithm
has been used. To simplify the model, only a subset of
components and a subset of properties have been
taken into account. Six relevant variables (compo-
nents) of compound formulations have been consid-
ered in this analysis: radiation dose, sensitizer, sulfur,
antioxidant, accelerator, and carbon black. Other in-
gredients in the formulation have been proven not to
be important in this analysis, as shown later. Three
output variables have been taken into account: 100%
modulus, tensile strength, and elongation at break.
Selecting 25 compounds, the formulations have been
designed on the basis of Taguchi statistical technique
(L25), as shown in Table I. The values have been
normalized in the range 0–1. Table II shows a list of
the designed compounds, and their experimental re-
sults are given in Table III.

The term back propagation refers to the process by
which derivatives of network error, with respect to

TABLE I
Taguchi L25 Model

Run Dose Sensitizer Filler Antioxidant Accelerator Sulfur

1 I I I I I I
2 I II II II II II
3 I III III III III III
4 I IV IV IV IV IV
5 I V V V V V
6 II I II III IV V
7 II II III IV V I
8 II III IV V I II
9 II IV V I II III

10 II V I II III IV
11 III I III V II IV
12 III II IV I III V
13 III III V II IV I
14 III IV I III V II
15 III V II IV I III
16 1V I IV II V III
17 1V II V III I IV
18 1V III I IV II V
19 1V IV II V III I
20 1V V III I IV II
21 V I V IV III II
22 V II I V IV III
23 V III II I V IV
24 V IV III II I V
25 V V IV III II I

TABLE II
Formulation for 25 Sets of Compounds Indicating the Levels of Six Factors by

Following the Taguchi Table Mentioned in Table I

Run
Dose
(kGy)

Sensitizer
(phr)

Filler
(phr)

Antioxidant
(phr)

Accelerator
(phr)

Sulfur
(phr)

1 0 0 0 0 0 0.05
2 0 1 15 0.5 0.2 0.2
3 0 2 30 1 0.5 0.5
4 0 3 45 1.5 1 1
5 0 4 60 2 1.5 1.5
6 50 0 15 1 1 1.5
7 50 1 30 1.5 1.5 0.05
8 50 2 45 2.0 0 0.2
9 50 3 60 0 0.2 0.5

10 50 4 0 0.5 0.5 1
11 100 0 30 2.0 0.2 1
12 100 1 45 0 0.5 1.5
13 100 2 60 0.5 1 0.05
14 100 3 0 1 1.5 0.2
15 100 4 15 1.5 0 0.5
16 150 0 45 0.5 1.5 0.5
17 150 1 60 1 0 1
18 150 2 0 1.5 0.2 1.5
19 150 3 15 2 0.5 0.05
20 150 4 30 0 1 0.2
21 200 0 60 1.5 0.5 0.2
22 200 1 0 2 1.0 0.5
23 200 2 15 0 1.5 1
24 200 3 30 0.5 0 1.5
25 200 4 45 1 0.2 0.05
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network weights and biases, can be computed. The
training of ANNs by back propagation involves three
stages: (i) the feed forward of the input training pat-
tern, (ii) the calculation and back propagation of the
associated error, and (iii) the adjustment of weights.
Training, an important procedure in the prediction,
can be elaborated as follows. Training the network to
learn consists of presenting it with a set of correlated
inputs and outputs, called examples. The system
learns by adjusting the weights wi of the node connec-
tions in such a way as to minimize the differences
between the target output dk predicted for the kth
pattern and the actual output yk (measured). This
means minimizing the mean square error given by eq.
(1):

Eerror � �
k�1

k

�dk � yk�
2 (1)

The most extended method of minimizing the error
function is the back-propagation algorithm, a general-
ization of the steepest method, which adjusts each
individual weight by eq. (2)21:

�wi � � �learning

�Eerror

�wi
(2)

where �learning is the learning constant that influences
the convergence speed and the effectiveness of the
learning process. In general, the optimum value of
�learning depends on the problem that is being ana-
lyzed, and only small values of �learning guarantee
stable solutions. The learning parameter �learning
should be chosen small to provide minimization of the
total error function Eerror. However, for a small
�learning, the learning process becomes very slow. On
the other hand, large values of the same correspond to
fast learning, but lead to parasitic oscillations that
prevent the algorithm from converging to the desired
solution. Moreover, if the error function contains
many local minima, the network might get trapped in
some local minimum, or get stuck on a very flat pla-
teau. The network training finishes when all the errors
Eerror (after training) are below a previously estab-
lished error, Eerror. This process can be used with a
number of different optimization strategies.

In this study, a three-layer back propagation net-
work (BP) based on C�� programming has been
built, in which there are six nodes in the input layer, 8
nodes in the hidden layer, and only one node in the
output layer. Figure 1(b) shows the structure of this BP
network, in which wi is the connection weight between
the output layer and the ith node in the hidden layer,
Vij is the connection weight between the ith node in
the hidden layer and jth node in the input layer, and
Uij is the connection weight between the ith node in
the input layer and the jth input variable. In this work,
radiation dose in kGy (C1), the level of the sensitizer
(C2), and the amount of filler (C3), antioxidant (C4),
accelerator (C5), and sulfur (C6) comprise the input
signals. Four multilayered feed forward networks
have been constructed, and the four outputs, namely
100% modulus, tensile strength, elongation at break,

TABLE IV
Details of the Materials and Their Suppliers

Material Supplier/Manufacturer

NBR
ACN content: 33 % JSR Industries Ltd., Japan
SBR-1502 Synthetics and chemicals
TMPTAa, density 1110 kg m�3 UCB chemicals, Drogenbos,

Belgium
Zinc oxidea E-Merck, Mumbai, India
Stearic acidb Local supplier
Dioctyl phthalate Ranbaxy Ltd., Mumbai,

India
MBTSc ICI Ltd., Rishra, India
Carbon black Philips carbon black,

Durgapur, India
Sulfur Qualigens, Mumbai, India
Methyl ethyl ketone E-Merck, Mumbai, India

a Trimethylolpropane triacrylate.
b rubber grade.
c Mercapto benzothiazole disulphide (accelerator).

TABLE III
Mechanical Properties and Volume Fractions for the

Above 25 Sets of Compounds

Run
100% modulus

(MPa)

Tensile
Strength

(MPa)
Elongation at

break (%)
Volume
fraction

1 0.3 0.3 79 0.021
2 0.4 0.5 66 0.096
3 0.8 5.0 1300 0.042
4 1.2 9.8 883 0.073
5 2.3 11.6 443 0.112
6 1.3 7.8 574 0.127
7 1.0 12.4 1000 0.082
8 1.0 9.4 1027 0.067
9 2.8 15.5 476 0.123

10 0.8 3.5 651 0.149
11 1.5 8.2 501 0.118
12 3.3 16.2 402 0.146
13 3.3 17.5 485 0.119
14 0.8 2.4 462 0.126
15 1.2 8.6 665 0.122
16 2.9 13.5 383 0.135
17 4.4 17.5 362 0.138
18 1.0 2.1 331 0.147
19 1.4 6.7 444 0.161
20 3.0 11.5 283 0.165
21 3.7 15.1 367 0.108
22 0.9 2.4 377 0.135
23 2.1 8.0 331 0.162
24 3.3 8.6 225 0.174
25 3.8 14.9 315 0.157
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and volume fraction of rubber in the swollen gel, have
been predicted for different formulations. All the in-
puts are brought down to a normalized amplitude
range, and training of the network is carried out by
calculating the mean squared error between the target
(dk) and measured outputs (yk) (eq. (1)). The weights
are updated and the training is performed by a back
propagation algorithm.22

Evaluation of the ANN method

The quality of the prediction can normally be charac-
terized by the root mean square error (RMSE) of the
predicted values from the real measured data. The
smaller the RMSE of the test dataset is, the higher is
the predictive quality.

As an improvement, the coefficient of determination
B23 (also called R2 coefficient in some publications24,25)
has been introduced to evaluate the ANN�s quality, as
defined by eq. (3):

B � 1 �

�
i�1

m

�O�p�i		 � O�i		2

�
i�1

m

�O�i	 � O	2

where O(p(i)) is the predicted property characteristic,
O(i) is the ith measured value, O is the mean value of
O(i), and m is the number of test data. The coefficient
B describes the fit of the ANN�s output variable curve.
Higher B coefficients indicate an ANN with better
output approximation capabilities. To avoid any arti-
ficial influence in selecting the test data, a random
technique can be applied in the selection, and the
entire process is repeated independently many times
(e.g., 50 times). Afterwards, the distribution of B val-
ues is recorded and the percentage of B 
 0.9 is
calculated. Since this value is identified as of high
predictive quality, that is, less than 15% of the RMSE
is between the predicted values and the measured

TABLE V
ANOVA Summary on Tensile Strength of Nitrile Rubber

Factors
Sum of

squares SS
Degree of

freedom (N)
Variance (Vf)

SS/N F Ratio Vf/Ve

Remarks on comparison
with theoretical F ratio

� 2.1 4,24 from tables at
90% confidence

Radiation dose 89 4 22.2 6.8 Significant
Sensitizer 55 4 13.8 4.2 Significant
Filler 616.5 4 154.1 47.4 Highly significant
Antioxidant 13 4
Accelerator 52 4 13 4 Significant
Sulfur 72 4 18 5.5 Significant
SS (T) 897.5 N (T) � 24
SS (e) 13 N (e) � 4 Ve � 3.25

Where,
SS(T) � Total sum of squares.
SS(e) � Sum of squares due to pooled error.
N(T) � Total degree of freedom.
N(e) � Degree of freedom due to pooled error.
Vf � Variance due to factor.
Ve � Variance due to pooled error.
*Indicates factor considered to generate the pooled error estimate.

TABLE VI
Comparison Between Predicted Values by the ANN and Actual Values with Different Training Inputs

Real values Predicted values

Trial no.
100% modulus,

MPa
Tensile

strength, MPa
Elongation at

break, %
100% modulus,

MPa
Tensile

strength, MPa
Elongation at

break, %

9 2.8 15.5 476 3.6 16.7 635
10 0.8 2.4 462 0.4 17.4 815
16 2.9 6.7 444 0.5 17.1 890
24 3.3 8.6 225 3.1 14.5 609

Training inputs were 21 datasets from Table II.
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ones, it is clear that the higher the percentage of B

 0.9 is, the better is the quality.23

EXPERIMENTAL

Preparation of the samples, materials, and sample
designation

The list of chemicals, nature and grade of rubber, and
their suppliers are listed in Table IV. The samples are
designated as Ma/b/c/d/e/f, where M stands for nitrile
rubber, a for amount of sulfur (phr), b for accelerator
(phr), c for radiation dose in kGy, d for TMPTA (phr),
e for carbon black (GPF grade), and f for antioxidant
(phr). For example, M1.5/0.5/150/0/0/0 indicates a sam-
ple containing 1.5 phr of sulfur, 0.5 phr of accelerator
(MBTS), irradiation dose of 150 kGy, 0 phr TMPTA, 0
phr carbon black, and 0 phr antioxidant. The nitrile
rubber was mixed with sulfur, MBTS, and other in-
gredients using the conventional mixing procedure in
an open two-roll mill (Schwabenthon, Berlin). The
optimum cure time of all the compounds in the above

three sets were determined from the rheometric study
of the corresponding compounds in an oscillating disk
rheometer (ODR, 100S Monsanto) at 150°C. The sheets
were compression molded between Teflon sheets at a
temperature of 150°C and at a pressure of 5 MPa in an
electrically heated Moore press for optimum cure time
to obtain sheets of dimension 11.5 cm � 11.5 cm
� 0.1cm. The styrene butadiene rubber was mixed
using the same procedure, except that the accelerator
was added at the end of the mixing cycle. The detailed
procedures were described in our earlier articles.26,27

Irradiation of samples

The molded nitrile rubber samples were irradiated in
air at room temperature of 25 � 2°C by an electron
beam accelerator at the NICCO Corp. Ltd, Shyamna-
gar, in West Bengal, India. The specifications of the
electron beam accelerator were given in our earlier
articles.10

TABLE VII
Additional 16 Sets of Compounds Indicating the Levels of Six Factors to Improve the Efficiency of the ANN and

Value of Their Mechanical Properties and Volume Fractions

Trial
Dose
(kGy)

Sensitizer
(phr)

Filler
(phr)

Antioxidant
(phr)

Accelerator
(phr)

Sulfur
(phr)

100% modulus
(MPa)

Tensile
strength
(MPa) E.B., %

Volume
fraction of

rubber

1 20 0 0 0 0.5 1.5 0.88 3.5 1193 0.077
2 50 0 0 0 0.5 1.5 0.98 2.9 519 0.149
3 150 0 0 0 0.5 1.5 1.11 2.6 369 0.189
4 300 0 0 0 0.5 1.5 1.4 2.7 273 0.211
5 20 0 0 0 1.5 0.5 0.73 2.4 1027 0.070
6 50 0 0 0 1.5 0.5 0.78 1.7 477 0.116
7 150 0 0 0 1.5 0.5 0.89 1.7 347 0.161
8 300 0 0 0 1.5 0.5 1.17 1.6 171 0.196
9 150 0 0 0 0.5 0.1 0.60 1.0 286 0.157

10 150 0 0 0 0.5 0.4 0.70 1.8 639 0.217
11 150 0 0 0 0.5 0.7 0.80 2.0 723 0.327
12 150 0 0 0 0.5 1.2 0.90 2.4 610 0.329
13 150 1 0 0 0.5 1.2 0.94 3.1 521 0.331
14 150 3 0 0 0.5 1.2 0.98 4.0 357 0.340
15 150 0 20 0 0.5 1.2 1.50 15.0 719 0.342
16 150 0 40 0 0.5 1.2 2.39 16.2 489 0.375

TABLE VIII
Comparison Between Predicted Values by the ANN and Actual Values with 30 Training Inputs

Real values Predicted values

Trial
no.

100%
modulus

MPa

Tensile
strength,

MPa

Elongation
at break,

%

100%
modulus,

MPa

Tensile
strength,

MPa

Elongation
at break,

%

9 2.8 15.5 476 3.2 16.4 570
10 0.8 2.4 462 0.5 3.6 583
16 2.9 6.7 444 1.4 8.1 595
24 3.3 8.6 225 3.4 9.5 312

Training inputs were 30 datasets from Table II and Table VII.
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Characterization of samples

Chemical test methods

Volume fraction of the rubber in the swollen gel �r was
calculated using the relation28:

Vr �
�Ds � FfAw	�r

�1

�Ds � FfAw	�r
�1 � As�s

�1 (4)

where �r Ds, Ff, Aw, As, �r, and �s are volume fraction
of rubber, deswollen weight of the sample, fraction
insoluble, sample weight, weight of the absorbed sol-
vent corrected for swelling increment, density of rub-
ber, and density of solvent, respectively. Methyl ethyl
ketone was used as the solvent for nitrile rubber and
toluene for styrene butadiene rubber.

Mechanical properties

Tensile specimens were punched out from the molded
sheets using ASTM Die–C. The tests were carried out
as per the ASTM D 412–98 methods in a universal
testing machine (Zwick 1445) at a crosshead speed of
500 mm/min at 25°C. The average of three tests is
reported here.

ANOVA analysis29

Analysis of variance (ANOVA) is a mathematical tech-
nique that breaks total variation down to accountable
sources; total variation is decomposed into its appro-
priate components. The significance of each factor is
determined by comparing with the theoretical F ratio
from statistical tables.

RESULTS AND DISCUSSION

The significance of parameters was determined by
ANOVA analysis.29 A sample calculation is shown for
tensile strength in Table V for nitrile rubber, and the
results are interpreted by comparing with the theoret-
ical F ratio from statistical tables. It is found that at
least five of the above selected parameters played a

significant role in influencing the mechanical proper-
ties and volume fractions for the 25 sets of com-
pounds. It is impossible to design a model by other
methods, like Response Surface Methods, unless a
reasonable quantity of experience is available. This
created the necessity to opt for neural networks for
predicting the mechanical properties. The use of neu-
ral networks can circumvent many of these limita-
tions. It is possible to use a well-trained network to
generate, by numerical simulation, any experimental
design independently of the required number of ex-
periences. Moreover, it doesn’t matter if a given point
of the experiment design has been measured or not;
the network will predict the value from the available
information.

Once the optimum parameters in the ANN, as de-
fined in eq. (2), are determined, the network is ready
to be used. To ensure that the network predicts cor-
rectly the mechanical properties of the new com-
pounds, 25 sets of compounds given in Table II are
divided into two subsets: one for training (training set,
comprising 20 experiments) and the other for test (test
set). The network training has been carried out with
the data of the first subset. During the training pro-
cess, the neurons learn the relationship between the

Figure 2 Percent of relative error of predicted results with
the training data.

TABLE IX
Comparison Between Predicted Values by the ANN and Actual Values with 37 Training Inputs

Real values Predicted values

Trial
no.

100%
modulus,

MPa

Tensile
strength,

MPa

Elongation
at break,

%

Volume
fraction of

rubber

100%
modulus,

MPa

Tensile
strength,

MPa

Elongation
at break,

%

Volume
fraction of

rubber

9 2.8 15.5 476 0.126 3.1 16.1 511 0.133
10 0.8 2.4 462 0.149 0.6 2.9 534 0.154
16 2.9 6.7 444 0.161 2.6 7.1 473 0.156
24 3.3 8.6 225 0.174 3.1 9.1 270 0.182

Training inputs are 37 datasets from Table II and Table VII.
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output variables and the input ones by adjusting the
connection weights. After the ANN has been trained,
it can be used to predict the compound properties of
the test set. Compounds with trial numbers of 9, 10,
16, and 24 have been entered in the network for the
prediction process. Table VI shows the results ob-
tained from 20 elements for the training set and 4 for
the test set. The predictions are not accurate, and it is
better only for a few 100% modulus values. The
greater and more representative the training set, the

smaller will be the error for predicting the properties
of new compounds. This fact has been utilized, and
more data sets from Table VII are supplemented in the
training process. The network was retrained with 30
datasets from Tables II and Table VII, and the pre-
dicted values for the same from sets 9, 10, 16, and 24
are given in Table VIII. It is found that the overall
relative error is less as compared with training the
network with 21 datasets. The efficiency of prediction
has been further improved by increasing the number
of datasets (epoch number). The network predicts
very precisely with 37 datasets (21 datasets from Table
II and 16 datasets from Table VII). The relative average
error decreases with the increase in the number of
datasets, as shown in Table IX and Figure 2. The
network is able to predict even the volume fraction
very precisely with same number of training datasets.
Further, the quality of ANN prediction has been char-
acterized from the coefficient of determination or B
value. Figure 3 gives the B value (calculated by eq. (3))
versus the number of training datasets. It can be
clearly seen that increasing the training datasets could
reach very good agreement for 100% modulus, tensile
strength, and volume fraction, but the required num-
ber for reaching a perfect predictive quality for elon-
gation at break is low. These could be considered as
follows: 100%modulus, tensile strength, and volume

Figure 3 Dependence of test dataset B value on the number
of the training dataset for 100% modulus, tensile strength,
elongation at break, and volume fraction.

TABLE X
Formulation and Properties of SBR

S.no.

Radiation
dose
(kGy)

TMPTA
level
(phr)

Silane
level
(phr)

Filler
loading

(phr)
Silica

content

300%
modulus,

MPa T.S. MPa E.B., %
Volume
fraction

1 0 0 0 20 4.7 3.1 12.4 700 0.172
2 100 0 0 20 4.7 3.4 10.8 590 0.182
3 200 0 0 20 4.7 4.2 9.4 484 0.181
4 0 3 0 20 4.7 3.0 12.8 710 0.171
5 20 3 0 20 4.7 3.0 12.5 684 0.176
6 50 3 0 20 4.7 3.0 13.2 715 0.177
7 100 3 0 20 4.7 3.1 14.8 741 0.187
8 200 3 0 20 4.7 3.3 15.2 725 0.188
9 100 1 0 20 4.7 3.8 13 659 0.224

10 100 5 0 20 4.7 3.1 14.1 734 0.178
11 100 0 1 20 4.7 3.8 12.6 598 0.183
12 0 0 3 20 4.7 3.4 12 620 0.183
13 100 0 3 20 4.7 3.9 12.3 596 0.186
14 100 0 5 20 4.7 4.0 11.1 562 0.188
15 0 0 0 10 4.7 2.2 7.6 710 0.168
16 0 0 0 60 4.7 12.3 20.9 417 0.222
17 100 3 0 10 4.7 2.2 7.0 607 0.168
18 100 3 0 40 4.7 5.7 26.8 751 0.192
19 100 3 0 60 4.7 12.3 27.7 529 0.211
20 100 0 3 10 4.7 2.1 7.5 715 0.171
21 100 0 3 60 4.7 14.2 25.5 445 0.260
22 100 3 0 20 0 3.2 12.4 704 0.169
23 100 3 0 20 2.3 3.2 12.7 719 0.182
24 100 3 0 20 5.6 3.3 14.6 696 0.182

The formulation was based on 100phr of rubber.
The results have been taken from A. M. Shanmugharaj and Anil K. Bhowmick.26
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fraction have a stronger relationship than elongation
at break to those of material compositions. In other
words, the nonlinear behavior of elongation at break is
higher than that of the other outputs. Therefore, an
ANN needs more experience in learning a complex
nonlinear relationship for elongation at break than for
other outputs.

The effectiveness in prediction by the constructed
ANN has been further tested by a completely new
dataset using styrene butadiene rubber26 (Table X).
The nature of rubber and experimental conditions
were different. The parameters were entirely different.
The network has been trained with 24 datasets, and
the predicted results are given in Table XI. The coef-
ficient of determination B, with a value of 0.97 and 0.82
for tensile strength and volume fraction of rubber,
respectively, and low value of relative % error indicate
the exactness in prediction of the network (Table XII).

It must be stated here that for all these compositions
for both NBR and SBR, the relative error and B values
lie in the same range even when training and test
datasets are interchanged/varied, provided 35 or 37
datasets are used for training the network.

Validation of generated results

It does not matter if a given point of the experimental
design was measured or not; the network will predict
the value from the available information. This is dis-
cussed in this section for the M1.5/0.5/0–300/0/0/0 and

M0.5/1.5/0–300/0/0/0 systems. The dependence of 100%
modulus for two systems, namely M1.5/0.5/0–300/0/0/0
and M0.5/1.5/0–300/0/0/0, is shown in Figure 4(a,b).

An increase in 100% modulus is observed with an
increase in radiation dose, since the degree of
crosslinking involving both shorter and larger macro-
molecular chains is directly proportional to the inte-
gral radiation dose absorbed by the polymer. The
predicted values of 100% modulus for the 70 kGy dose
by ANN fall in the straight line fit with a regression

TABLE XI
Real Values vs. Predicted Values of Datasets in Table X.

Real values Predicted value

Trial
no.

300%
modulus,

MPa

Tensile
strength,

MPa E.B. (%)

Volume
fraction of

rubber

300%
modulus,

MPa

Tensile
strength,

MPa E.B. (%)

Volume
fraction of

rubber

5 3.0 12.5 684 0.176 3.3 12.6 711 0.185
10 3.1 14.1 734 0.178 3.4 14.4 738 0.180
15 2.2 7.6 710 0.168 2.5 7.9 713 0.171
20 2.1 7.5 715 0.171 2.4 8.1 725 0.182
24 3.4 14.6 696 0.182 3.8 15.5 709 0.186

TABLE XII
Relative Error (%) Between Predicted and Real Values

300%
modulus

(MPa)

Tensile
strength,

(MPa)

Elongation
at break,

%

Volume
fraction of

rubber

Error Error Error Error
0.8 3.9 5.1

9.6 2.1 0.5 1.1
13.6 3.9 0.4 2.9
14.2 8.0 1.4 1.7
11.7 6.2 1.9 2.1
Avg. 11.8 4.2 1.6 2.6 Figure 4 Validation plots for the predicted results of 100%

modulus for (a) M1.5/0.5/0–300/0/0/0 and (b) M0.5/1.5/0–300/0/0/0.
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value of 0.9 for both the M1.5/0.5/0–300/0/0/0 and
M0.5/1.5/0–300/0/0/0 systems. It is also observed that the
prediction is quite accurate for 20, 50, 100, 150, and 300
irradiation doses.

There are certain chemical agents, often called pro-
rads, that act as radiation sensitizers in an electron
beam induced curing process. TMPTA is one such
sensitizer that is suitable for use in NBR rubber. The
predicted values for 100% modulus, tensile strength,
elongation at break, and volume fraction for
M1.5/0.5/150/0–3/0/0 are in good accord with the exper-
imental values [Fig. 5(a)]. Similarly, the predicted val-
ues of mechanical properties and volume fractions of
carbon black filled NBR, that is, M1.5/0.5/150/0/0–40/0,
are also in good agreement [Fig. 5(b)]. A mathematical
model relating the % gel content with radiation dose
was developed by Vijayabaskar et al.30 The lifetime of
spurs, an important criterion for overlapping of spurs,
can be determined for any system using this model.

G � a�1 � e�bD	 (5)

Here, G is the gel content, and the lifetime of spurs is
determined by the critical shift factor b. The volume
fraction of rubber, which is highly dependent on % gel
content, shows a similar variation with radiation dose

(Fig. 6). The % gel content in the mathematical model
could be replaced with Vr, and lifetime of spurs b
could be determined. The critical shift factor b was
determined for the system M1.5/0.5/0–300/0/0/0 from the
experimental values in Table VII. This b value was then
deduced, also using an ANN, from the predicted vol-
ume fraction for the same system M1.5/0.5/0–300/0/0/0.
This shows the effectiveness of the network in predicting
the results that are validated with this mathematical
model.

CONCLUSIONS

1. An ANN was implemented for predicting the
mechanical properties of nitrile rubber, influ-
enced by six significant factors (radiation dose,
sensitizer, filler, antioxidant, accelerator, and sul-
fur).

2. It was found that the efficiency of prediction
increased with the number of training data, and
the quality of prediction could be determined by
the B value or correlation coefficient.

Figure 6 Variation of volume fractions from experimental
dataset and predicted values for M1.5/0.5/0–300/0/0/0 with
different doses.

Figure 5 (a) Validation plots for the predicted results of 0.5
phr loading of TMPTA for M1.5/0.5/150/0–3/0/0; (b) Valida-
tion plots for the predicted results of 10phr loading of car-
bon black (GPF grade) for M1.5/0.5/150/0/0–40/0.
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3. ANN predicted tensile strength, 100% modulus,
elongation at break, and volume fraction of rub-
ber accurately for nitrile rubber vulcanizates.
4. Prediction of the above properties was also

verified with a different system comprised of
styrene butadiene rubber.

5. The critical shift factor b determined from the
predicted volume fractions by the ANN was in
agreement with that determined from experi-
mental results.
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